Asparagine synthesis in pea leaves, and the occurrence of an asparagine synthetase inhibitor.

نویسندگان

  • K W Joy
  • R J Ireland
  • P J Lea
چکیده

Asparagine is present in the mature leaves of young pea (Pisum sativum cv Little Marvel) seedlings, and is synthesized in detached shoots. This accumulation and synthesis is greatly enhanced by darkening. In detached control shoots, [(14)C]aspartate was metabolized predominantly to organic acids and, as other workers have shown, there was little labeling of asparagine (after 5 hours, 3.1% of metabolized label). Addition of the aminotransferase inhibitor aminooxyacetate decreased the flow of aspartate carbon to organic acids and enhanced (about 3-fold) the labeling of asparagine. The same treatment applied to darkened shoots resulted in a substantial conversion of [(14)C]aspartate to asparagine, over 10-fold greater than in control shoots (66% of metabolized label), suggesting that aspartate is the normal precursor of asparagine.Only traces of glutamine-dependent asparagine synthetase activity could be detected in pea leaf or root extracts; activity was not enhanced by sulfhydryl reagents, oxidizing conditions, or protease inhibitors. Asparagine synthetase is readily extracted from lupin cotyledons, but yield was greatly reduced by extraction in the presence of pea leaf tissue; pea leaf homogenates contained an inhibitor which produced over 95% inhibition of an asparagine synthetase preparation from lupin cotyledons. The inhibitor was heat stable, with a low molecular weight. Presence of an inhibitor may prevent detection of asparagine synthetase in pea extracts and in Asparagus, where a cyanide-dependent pathway has been proposed to account for asparagine synthesis: an inhibitor with similar properties was present in Asparagus shoot tissue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes of glutamine and asparagine content in cucumber seedlings in response to nitrate stress

Nitrogen fertilizer application rates in intensive agricultural systems have increased dramatically in recent years, especially in protected vegetable production systems. This excessive use of nitrogen fertilizer has resulted in soil secondary salinity, which has become a significant environmental stress for crops such as cucumber, in the protected farmlands. It is thus necessary to illuminate ...

متن کامل

Elevated levels of asparagine synthetase activity in physiologically and genetically derepressed Chinese hamster ovary cells are due to increased rates of enzyme synthesis.

The activity of asparagine synthetase in Chinese hamster ovary (CHO) cells is increased in response to asparagine deprivation or decreased aminoacylation of several tRNAs (Andrulis, I. L., Hatfield, G. W., and Arfin, S. M. (1979) J. Biol. Chem. 254, 10629-10633). CHO cells resistant to beta-aspartylhydroxamate have up to 5-fold higher levels of asparagine synthetase than the parental line (Gant...

متن کامل

Subcellular Localization of Asparaginase and Asparagine Aminotransferase in Pisum sativum Leaves.

Protoplasts isolated from young and mature pea leaves (Pisum sativum L.) were broken and their contents fractionated by differential centrifugation or on sucrose-density gradients. Asparaginase was found only in the cytosol of young leaves. Asparagine aminotransferase was found in both young and mature leaves and was localized exclusively in the peroxisome. This corroborates the observation tha...

متن کامل

Asparaginase Isolated from Developing Seeds of Pisum sativum

Asparaginase (EC 3.5.1.1) was isolated from the developing seed of Pisum sativum. The enzyme is dependent upon the presence of K+ for activity, although Na+ and Rb+ may substitute to a lesser extent. Maximum activity was obtained at K+ concentrations above 20 millimolar. Potassium ions protected the enzyme against heat denaturation. The enzyme has a molecular weight of 68,300. Asparaginase acti...

متن کامل

Amino Acid metabolism of pea leaves: labeling studies on utilization of amides.

Short term (2-hour) incorporation of nitrogen from nitrate, glutamine, or asparagine was studied by supplying them as unlabeled ((14)N) tracers to growing pea (Pisum sativum L.) leaves, which were previously labeled with (15)N, and then following the elimination of (15)N from various amino components of the tissue. Most components had active and inactive pools. Ammonia produced from nitrate was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 73 1  شماره 

صفحات  -

تاریخ انتشار 1983